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ABSTRACT The reconstruction of multitaxon trees from
molecular sequences is confounded by the variety of algorithms
and criteria used to evaluate trees, making it difficult to compare
the results of different analyses. A global method of multitaxon
phylogenetic reconstruction described here, Bootstrappers Gam-
bit, can be used with any four-taxon algorithm, including dis-
tance, maximum likelihood, and parsimony methods. It incor-
porates a Bayesian-Jeffreys'-bootstrap analysis to provide a
uniform probability-based criterion for comparing the results
from diverse algorithms. To examine the usefulness of the
method, the origin of the eukaryotes has been investigated by the
analysis of ribosomal small subunit RNA sequences. Three
common algorithms (paralinear distances, Jukes-Cantor dis-
tances, and Kimura distances) support the eocyte topology,
whereas one (maximum parsimony) supports the archaebacte-
rial topology, suggesting that the eocyte prokaryotes are the
closest prokaryotic relatives of the eukaryotes.

Determining globally optimal, multitaxon phylogenetic trees is
computationally intensive because the number of possible
trees increases rapidly with increasing taxa. For four taxa, 3
unrooted trees must be compared, whereas for thirteen,
13,749,310,575 must be compared (1). Evaluating multitaxon
trees derived by different methods is further complicated by
diverse optimality criteria. For example, distance methods
frequently search for local minima by using least-squares
criteria, whereas parsimony methods minimize the number of
nucleotide changes, often using global searches (2). Currently
no common basis exists for reconstructing trees by using
different algorithms.

Bayesian and likelihood methods assess the probabilities of
trees and thereby can provide a common basis for reconstruct-
ing trees by using different algorithms. Sinsheimer et al. (3)
developed a method for calculating the probability of trees
derived by evolutionary parsimony, but the calculations are
complex for trees with more than five taxa. Felsenstein (4) has
thoughtfully proposed that bootstrap replicates (5, 6) might
provide a good method of assessing the likelihood function in
tree reconstruction. Both groups calculate the probability,
P(treejlS), that the jth tree is correct given aligned sequences,
S. These are complex calculations. In this paper one calculates
something simpler-the probability, P(HjIS), that algorithm A
applied to a sequence of infinite length (generated under the
same model as S) would yield thejth tree. Under a multinomial
model (assuming a Jeffreys' prior probability on the underlying
parameters) the integral for calculating P(HAIS) can be esti-
mated by bootstrap replication. Bootstrappers Gambitt com-
bines this bootstrap with a multitaxon algorithm for any
four-taxon method.

AN EXAMPLE
Bootstrappers Gambit functions by decomposing multiple
taxon trees into sets of four taxon statements as illustrated in
Fig. 1 for a five-taxon tree. Five aligned sequences at the top
of the figure corre'spond to taxa 1 through 5. Four bootstrap
replicates of the original sequences of the five aligned se-
quences shown at the top of Fig. 1 were taken by sampling with
replacement. Maximum parsimony is used to analyze taxa four
at a time, using the neighbors-or for distances, the weak
neighbors-relationship (7). For four taxa (i, j, k, and 1) three
trees are possible (the E tree clusters i with j and k with 1; the
F tree clusters i with k; and the G tree clusters i with 1). For
example, in the first column of replicate 1 the quartet repre-
sented by taxa 1, 2, 3, and 4 (denoted 1234) corresponds to the
sequence pattern AAAA. Since this pattern supports no tree,
by parsimony, the result is indicated by a blank (-) in the table
of quartet values for replicate 1. In the second column the
sequences for quartet 1234 are TTCC. Parsimony interprets
this pattern as support for the E tree (8) and an e is entered
in the quartet value table. The most parsimonious four-taxon
trees are then chosen by counting es, fs, and gs at all sequence
positions. The four-taxon trees supported at the most positions
are entered into the quartet value table. (If two trees tie, then
no tree is selected.) For replicate 1 the pattern of winning
four-taxon tree values is EEEEE (quartets 1234, 1235, 1245,
1345, and 2345, respectively). This value pattern is uniquely
associated with the tree shown next to the pattern. Some
quartet value patterns are inconsistent with trees and may
support non-tree graphs (7). For example the pattern from
replicate 2, GEEFE, fits no tree. Details of Gambit, used to
relate value patterns to trees, are described in Appendix.
The last step involves calculating the probability of each tree.

The conditional probability that a particular tree would be
supported with infinite data is given by the number of repli-
cates supporting the tree divided by the total number of
replicates supporting trees (see Appendix). In the example two
trees corresponding to the EEEEE pattern are present and
the total number of trees is three, so that the probability of
the EEEEE tree is estimated as 2/3 and the probability of the
GEFFF tree is 1/3. Better estimates can be provided by
taking more replicates.

RESULTS
Computational Times. The speed of Bootstrappers Gambit

depends on the internal consistency of the data. It is fast for
consistent data sets and slow for sets with little, or no,
information content. To illustrate how times depend upon
sequence lengths, trees have been calculated from a set of nine
rRNA sequences (for taxa see Fig. 2 legend).

Abbreviation: STSV, site-to-site rate variation.
II tBootstrappers refers to the Bayesian-Jeffreys'-bootstrap method of

estimating probabilities. Gambit (or dance) refers to the systematic
phylogeny search.
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Taxa Original Sequence
1 A T C G G T A C C G
2 A T C G T G A G C G
3 A C C C T G A A T G
4 A C A T G G T G T G
5 A C A C T C T A G G

Bootstrap Replicate.

Taza Replicate 1 Replicate 2 Replicate 3 Replicate 4
1 A T G G T A A C C C T T G G G T A A G G A T G G G G T C C G T C C G T T A C C G
2 A T G G G A A G C C T T T T T G A A G G A T G G T T G GG G T C C G G G A G G G
3 A C C C G A A A T T C C T T T G A A G G A C C C T T G A A G C C C C G G A A A G
4 A C T T G T T G T T C C G G G G T T G G A C T T G G G G G G C A A T G G T G G G
5 A C C C C T T A G G C C T T T C T T G G A C C C T T C A A G C A A C C C T A A G

QuartetS
1234 - e -

1235 - e e
1245 - e -

1345 -

2345 -

1234 E
1235 E

1245 E
1345 E
2345 E

t Four Tazon tests *
_____e e e e g g g - - - - -

- - -- -e e e - - - - -

__e e ___e e f f f _e e__
__e e _____f f f _e e__

e-e f - - - - - - e e

G t
1 3 4 E Pattern

E corresponds
F to no tree

2 5 E

e g g- e
e e e - - - - - e - -

e - -ff- -- e e e
- - - -f f- - - - -e e
- - - - - - - f f - - e e

G + E
E 1 2 3 E
F E

F E
F 4 5 E

1 3 4

Probability( )( Sequences) = (1 + 0 + 0 + 1) / (1 + 0 + 1 + 1) = .67
2 5

1 2 3

Probability( ) Sequences) = (O + 0 + 1 + 0) / (1 + 0 + 1 + 1) = .33
4 5

FIG. 1. A five-taxon example of Bootstrappers Gambit. Parsimony is illustrated. Distance methods are similar but use four-point equations to
calculate winning four-taxon values.

The mean time to calculate a tree is shown in Fig. 2A. For
seven taxa, the logarithm of the mean time per tree increases
linearly with sequence length, whereas for eight and nine taxa
the results are nonlinear, with minima at lengths of 1000 (eight
taxa) and 1300 (nine taxa) nucleotides. Times range from less
than 1 sec per tree to nearly 1000 sec per tree.

Calculation times can be reduced considerably by relaxing
the requirement for 100% nodal consensus (seeAppendix), but
the results may depend on the order of taxon presentation. The
comparative time savings that can be obtained with 75% nodal
consensus are illustrated in Fig. 2B. Times range from 0.5 sec

per tree to 10 sec per tree. For internally consistent data using
the 100% model, one can analyze up to 9-12 taxa on a personal
computer (10), and the 75% consensus model can extend this
further (11).
An Example: The Origin of the Eukaryotes. A classical

biological problem, determining the origin of the eukaryotes
(12), illustrates the usefulness of Bootstrappers Gambit. Be-
cause the tree of life spans large evolutionary distances, its
reconstruction is strongly affected by unequal rate effects,
site-to-site rate variation (STSV), and alignment biases (9,
13-16) which cause incorrect trees to be reconstructed. Hence
the origin of eukaryotes is a hard problem with low informa-
tion content and, potentially, long calculation times.

Classically eukaryotes and prokaryotes have been consid-
ered to be two fundamental divisions of life; however, eu-

karyotes are defined by thepresence of a positive character, the
nucleus, whereas prokaryotes are characterized by the absence
of a nucleus (17). Assuming the nucleus to be the synapomor-
phy, prokaryotes may be a heterogenous or paraphyletic
group. Two mutually exclusive theories exist for their origin. In
one, the eocyte theory, eocytes (hyperthermophilic, sulfur-
metabolizing prokaryotes) are the closest prokaryotic relatives
of the eukaryotes (13). In the other, the archaebacterial
theory, halobacteria, methanogens, and eocytes are all equi-
distant (in time) from the eukaryotes (18).
To test Bootstrappers Gambit, seven diverse taxa were

analyzed (at 100% nodal consensus). These included se-

quences from a eukaryote, a eubacterium, a methanogen, a

halobacterium, Methanopyrus (intermediate between halobac-
teria/methanogens and eocytes/eukaryotes), and two eocyte
sequences. Four algorithms, maximum parsimony (8), Jukes-
Cantor distances (19), Kimura two-parameter distances (20),
and paralinear/log det distances (21-23) were tested. Only the
paralinear/log det distances algorithm is insensitive to unequal
rate effects, in the absence of STSV (21-23). (All four algo-
rithms are sensitive to STSV and no attempt was made here to
correct for this.) The two most probable trees based on our
analysis, displayed in Fig. 3, are arbitrarily rooted in the
eubacterial branch (24, 25). The eocyte tree is the most
probable tree by paralinear distances (69.0%), by Jukes-
Cantor distances (80.0%), and by Kimura two-parameter
distances (71.0%). Maximum parsimony (84.0%) selected the
archaebacterial tree.

DISCUSSION
In principle, the Bayesian-Jeffreys'-bootstrap method can be
used with Gambit or with any other multitaxon reconstruction
algorithm, including regular parsimony. Since Gambit and
regular parsimony can potentially produce different results, it
is not clear which method might be better. Gambit parsimony
examines only the set of four-taxon marginal distributions of
the data, whereas regular parsimony uses complete data and
hence may be better. Alternatively, Gambit parsimony may be
better because it accepts only tree-like data (7) and, unlike
regular parsimony, does not force non-tree-like data to fit a

tree. Clearly further research is needed.
The analyses presented here are based on a multinomial

model in which a large number of outcomes are considered.
For example, for five-taxon parsimony there are 25 informative
outcomes, and for four-taxon paralinear distances there may
be 256. This means for reasonable sequence lengths, N, one

may frequently consider nearly N-variate multinomials.
Hence, the Bayesian-Jeffreys'-bootstrap must perform well
even if counts of only one or two are observed. This seems to

e - - - - - -

- - _-e f f -

1 3 4

2 5
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FIG. 2. Computational times for multitaxon trees. Trees were
calculated from the following eukaryotes, in the order in which they
were entered: Homo sapiens, Rattus norvegicus, Xenopus laevis, Artemia
salina, Saccharomyces cerevisiae, Prorocentrum micans, Euglena graci-
lis, Zea mays, and Glycine max. Paralinear distances were used for these
calculations, but similar results were obtained for other algorithms
(data not shown). Shorter sequences were obtained by analyzing only
the 5'-most portions (20%, 40%, 60%, and 80%) of the 18S rRNA
sequence. Mean calculation times per tree (on a Compaq PC 386
running at 20 MHz) are indicated on the vertical axis. Sequence
lengths are indicated on the horizontal axis. Nodal consensus is 100%
forA and 75% for B. While the probabilities of trees are independent
of the order of taxon presentation, calculation times depend on the
order. The mean times per tree are geometric means calculated in the
order listed above and in reverse order. Pairwise alignments of rRNA
sequences were performed with the ALIGN program available in the
Dayhoff package (for conditions see ref. 9). Star alignments used
Saccharomyces as the reference.

be the case. Explicit numerical integrations for trinomials
(J.A.L., J. S. Sinsheimer, and R. J. A. Little, unpublished
work) indicate that even for the lowest count situations, such
as e = 1,f = 2, andg = 3, probabilities of trees calculated with
the bootstrap have a precision of approximately 1.2% when
referenced to the direct Bayesian-Jeffreys' calculations.

In the origin of eukaryotes example it is not surprising that
alternative trees were obtained. The biases caused by unequal
rates, STSV, and alignment order artifactually favor the ar-

chaebacterial tree, since the long branches of the eukaryotic
and eubacterial taxa attract (9, 14, 15, 21, 26, 27). Nevertheless,
three of four of these analyses favored the eocyte tree. Because
parsimony (which supports the archaebacterial tree) is quite
sensitive to unequal rate effects, whereas paralinear distances
(which supports the eocyte tree) is less affected, parsimony's
anomalous result may have been due to unequal rate effects.
These results are also consistent with four of five recent

studies of elongation factor EF-Tu genes. These include dis-

JC 80.0%
KD 71.0%
PD 69.0%
MP 8.0%

Eubacteria

JC 20.0%
KD 29.0%
PD 30.5%
MP 84.0%

Eocyte
(Thermoproteus)
Eocyte
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Methanop.yrus
Methanogens
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FIG. 3. The two most probable origin of eukaryotes trees obtained
by Bootstrappers Gambit. Four four-taxon algorithms were used:
Jukes-Cantor (JC), Kimura two-parameter distances (KD), paralinear
distances (PD), and maximum parsimony (MP). The probability of
each tree is indicated at the lower left of the trees. To reduce alignment
artifacts which can cause incorrect trees to be selected, sequences were
aligned by using the star alignment (9) with Thermoproteus tenax as the
reference. Because every bootstrap replicate is not necessarily con-

sistent with a tree, variable numbers of replicates were analyzed. Two
hundred trees were calculated for each algorithm. This required the
calculation of 2261, 2626, 2460, and 30,358 replicates for the paralinear
distance, the two-parameter distance, and the Jukes-Cantor and
maximum parsimony algorithms, respectively. Evolutionary parsimony
would have required about 666,000 patterns and was stopped for
running time considerations before calculations were completed. All
trees were calculated using 100% nodal consistency.

tance matrix analysis (28) (eocyte tree favored), maximum
parsimony analysis (26) (eocyte tree favored), maximum like-
lihood analysis (29) (eocyte tree more likely, but not statisti-
cally significant), paralinear distances (21) (eocyte tree fa-
vored), and distance matrix results (30) (archaebacterial tree
favored). Although STSV was not controlled in either the 18S
rRNA or the EF-Tu studies, these studies nevertheless add
additional support for the eocyte theory.

Clearly, the availability of a general algorithm for construct-
ing multitaxon trees is an advance. One hopes that in the future
the artifacts of STSV and alignment biases will be resolved.

APPENDIX

The Bayesian-Jeffreys'-Bootstrap. The following theorem
applies in any situation (biological or otherwise) in which there
is multinomial distribution.
THEOREM. Let Sk denote the simplex Sk = {[pl, *, pk]; pj

0, Pt + * * * + pk = 1} (the set of all possible probability vectors
fora k-variate multinomial distribution). Given a sample S ofsize
n from a k-variate multinomial distribution, let *r be the associ-
atedfrequency vector in Sk whose jth component is theproportion
of the sample resulting in the jth type ofoutcome. Given a subset
H of Sk, and a multinomial distribution, with a Jeffreys'prior on
the underlying probability parameter vector 7r (in Sk), the poste-
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rior probability that ir lies in H based on a sample S of n
observations drawn from this distribution, is (approximately) the
same as theproportion ofbootstrap replications S* ofS,for which
the associated frequency vector n* lies in H.
PROOF. Given the sample S, S = [Si,.. ., Sk], the probability,

P(S*I*), that a bootstrap replicate of S, S* = [xi, . .. , Xk], will
contain the jth outcome xj times is

nl!...x;! [= ] [ n]Xl! ... Xk! Ln_ [nJ

2irf 1.Xk ] []Xk

2irf Wl...-Xk
x exp[-A1 - (A2/2l)] ... exp[-Ak - (Ak/2sk)]

= 2 / l...Xk exp(-2/As) ... exp(-A&/2yk), [1]
2i7r 1 . .. Xk

k

where 7r = (s1/n, ..., skln) is the maximum likelihood
estimate of 7r. The second line follows from Stirling's approx-
imation, the third from the binomial expansion of P(S*Iir)
about its maximum by substitution of Aj = xj - sj, and the last
from A1 + ... + Ak = 0.

Given the sample, the probability of the underlying proba-
bilities, xT, can be calculated by using Bayes' equation, specif-
ically P(7rIS) x P(S|7r)Pj(iif). To make comparison with Eq. 1
easier the rs are transformed, ffj = xj/n. PJ(ff), the Jeffreys'
prior on the distribution of the underlying probabilities, is
proportional to (xi/n)-/2 . . . (xk/n) /2. Hence

Sl ! . .. Sk! [_n ][n ]

21TrAl ..Xk sl Sk

C +n
2,f lkl *- * * Xk

x exp[+A 1 - (l/&2s1l)] ... exp[+ASk - (A&/2Sk)]

-2~1...X exp(-A2/2s1) ... exp(-A&/2Sk)
2,f 1cI ... Xk

= CP(S*I*), [2]

where the steps in the calculation are justified as for Eq. 1 and
the constant has the value C = nk/2/(s1/2 ... sk112). P(rIlS) is
proportional to P(S*I,ir) except that P(S*I*) is restricted to
integer values of xj, whereas P(7rIS) is not. Noting that P(S*i*)
is a slowly varying function of xj, the probability of hypothesis
H, a subset of Sk, iS

P(HIS) I P(1TIS)dpl . . . dpkc E P(S*I|).
ir)H w H

[3]

Hence P(H1S) is (approximately) proportional to the fraction
of bootstrap replicates supporting H.
For this paper, letH = Hj (resp. HA) be the hypothesis that

tree j (resp. any tree) is the output of algorithm A applied to
infinitely long sequences generated under the same multino-
mial model as the data S. Then the conditional probability
P[HAjHA] is (approximately) the same as the ratio of the

number of those bootstrap replicates of S that support tree T1
divided by the number of such replicates that support any tree.
Assuming a multinomial model (see refs. 31-33) for four-taxon
parsimony analysis, k = 3 (S = [e, f, g], corresponding to the
counts for the E, F, and G patterns, respectively) and for
five-taxon parsimony k = 25 (since there are 25 informative
patterns), etc. Sites are not assumed independent and identi-
cally distributed since one can also classify according to site
type.
The Gambit Algorithm. Two examples of Gambit are illus-

trated in Fig. 4. In the first the sequence value pattern is
EEEGG, where the letters refer to the topologies of the
quartets 1234, 1235, 1245, 1345, and 2345, respectively. Quar-
tet 1234 has value E and corresponds to the tree (cycle free
connected graph) at the top of example 1. This tree contains
two internal nodes, Ni and N2, each connected to three
adjacent nodes. Ni is connected to two external nodes, rep-
resenting taxa 1 and 2, and to the internal node connecting taxa
3 and 4 (N2). To add taxon 5 to the tree and position it with
respect to node Ni, two new quartets, 1235 and 1245 (written
as 1235), are evaluated. Taxon 5 clusters with 1, with 2, or with
N2 (3 plus 4) if quartets 1235 both have value G, F, or E,
respectively. If 1235 and 1245 have different values (a logical
conflict) then the search is terminated. In example 1, the
pattern values 1235 = E indicate that taxon 5 clusters with N2,
shown by a directed edge at the bottom of example 1. Analysis
ofN2 (1345 = G) indicates that taxon 5 clusters with taxa 1 plus
2. Thus the node connecting taxon 5 can be introduced only at
the sink between nodes Ni and N2 in the resulting intree (34).
In example 2, the quartet pattern resembles that found in
example 1, except that the pattern values 1235 and 1345 are
reversed. Since 1235 = G and 1345 = E, there is logical
consistency at both nodes. However, the overall sequence
pattern is inconsistent (an arboreal inconsistency, see below)
since the analysis of Ni clusters taxa 5 and 1, whereas the

EXAMPLE I

Pattern EEEGG

Four Taxa
1234 = E

1 3

Ni N2

2 4

Five Taxa

Node 1: 123 54

1235 = E Consist-
1245 = E Jent Node

Node 2: 134 5*2

1345 = G Consist-
2345 = G-ent Node

1 5 3

Ni .* N2

2

EXAMPLE 2

Pattern EGGEE

Four Taxa
1234 = E

1 3

Ni ) N2

2 4

Five Taxa

Node 1: 123 54

1235 = G Consist-
1245 = G Jent Node

Node 2: 134 52

1345 = E Consist-
2345 = E ent Node

Nl

4

Consistent
with tree

1 5 3

2 -::;F4< N22 5 4

Not Consistent
with any tree

FIG. 4. Two five-taxon examples illustrating the Gambit algorithm.
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analysis of N2 clusters taxa 5 and 4 as shown by directed edges
at the bottom of Fig. 4.

In general an N-taxon tree can be reconstructed by succes-
sively adding taxa and by requiring at each stage that: (i) the
quartet values calculated about each internal node must be the
same (nodal consistency), and (ii) the acyclic digraph produced
by the analysis of quartet values derived from all internal nodes
is an intree, that is, there exists a single insertion site for the
taxon being added (arboreal consistency). Condition i may be
relaxed by requiring only that a given percentage of quartet
values be identical. This speeds execution, but for less than
100% consistency solutions are not necessarily independent of
the order of taxon presentation.

Bootstrappers Gambit Solutions (for the 100%o Consensus
Model) Are Global. Because of conditions i and ii, any tree
selected by Gambit will be consistent with all quartets exam-
ined during tree construction. Thus if all possible quartets are
examined by Gambit [for N taxa, N choose 4, (s), different
quartets are possible], then tree selection must be independent
of the order of taxon presentation-that is, the solution is
global. An inductive proof follows.

First assume that the statement is valid for an N - 1 taxon
tree [namely, all possible, (N4), quartets are tested by the
Gambit algorithm during reconstruction of the N - 1 tree].
Second, note that the set of triples defined by the nodes of the
N - 1 taxon tree must include all possible, (NX1), triples (since
every set of three taxa must intersect at a node in the N - 1
taxon tree). Consider now the Gambit extension from N - 1
taxa to N taxa. In the extension step a new taxon, taxon N, is
added to the tree, so that each triplet node in theN - 1 tree,
ijk, is converted into a quartet, ijk N. Since N was not among
the taxa included in theN - 1 tree, none of these new quartets
were in the set of quartets used to reconstruct theN - 1 tree.
Furthermore, since ( N2) quartets are considered in the N -
1 taxon tree and (N- ) new quartets are considered in extend-
ing the tree to N taxa, a total of (N41) + ( N31)= (4c) unique
quartets will be used to calculate the N-taxon tree. Since there
are only (N4) possible quartets, all of them must have been
evaluated during the construction of the N-taxon tree. Because
the assumption is true for four taxa [there is only one, (4),
quartet for four taxa], by induction it must also be true for all
N-taxon trees (for N 4).
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